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Absolute risk and predictors of the growth of acute 
spontaneous intracerebral haemorrhage: a systematic 
review and meta-analysis of individual patient data
Rustam Al-Shahi Salman*, Joseph Frantzias*, Robert J Lee*, Patrick D Lyden, Thomas W K Battey, Alison M Ayres, Joshua N Goldstein, 
Stephan A Mayer, Thorsten Steiner, Xia Wang, Hisatomi Arima, Hitoshi Hasegawa, Makoto Oishi, Daniel A Godoy, Luca Masotti, 
Dar Dowlatshahi, David Rodriguez-Luna, Carlos A Molina, Dong-Kyu Jang, Antonio Davalos, José Castillo, Xiaoying Yao, Jan Claassen, 
Bastian Volbers, Seiji Kazui, Yasushi Okada, Shigeru Fujimoto, Kazunori Toyoda, Qi Li, Jane Khoury, Pilar Delgado, José Álvarez Sabín, 
Mar Hernández-Guillamon, Luis Prats-Sánchez, Chunyan Cai, Mahesh P Kate, Rebecca McCourt, Chitra Venkatasubramanian, Michael N Diringer, 
Yukio Ikeda, Hans Worthmann, Wendy C Ziai, Christopher D d’Esterre, Richard I Aviv, Peter Raab, Yasuo Murai, Allyson R Zazulia, 
Kenneth S Butcher, Seyed Mohammad Seyedsaadat, James C Grotta, Joan Martí-Fàbregas, Joan Montaner, Joseph Broderick, Haruko Yamamoto, 
Dimitre Staykov, E Sander Connolly, Magdy Selim, Rogelio Leira, Byung Hoo Moon, Andrew M Demchuk, Mario Di Napoli, Yukihiko Fujii, 
Craig S Anderson, Jonathan Rosand, for the VISTA-ICH Collaboration† and the ICH Growth Individual Patient Data Meta-analysis Collaborators†

Summary
Background Intracerebral haemorrhage growth is associated with poor clinical outcome and is a therapeutic target for 
improving outcome. We aimed to determine the absolute risk and predictors of intracerebral haemorrhage growth, 
develop and validate prediction models, and evaluate the added value of CT angiography.

Methods In a systematic review of OVID MEDLINE—with additional hand-searching of relevant studies’ bibliographies— 
from Jan 1, 1970, to Dec 31, 2015, we identified observational cohorts and randomised trials with repeat scanning 
protocols that included at least ten patients with acute intracerebral haemorrhage. We sought individual patient-level 
data from corresponding authors for patients aged 18 years or older with data available from brain imaging initially 
done 0·5–24 h and repeated fewer than 6 days after symptom onset, who had baseline intracerebral haemorrhage 
volume of less than 150 mL, and did not undergo acute treatment that might reduce intracerebral haemorrhage volume. 
We estimated the absolute risk and predictors of the primary outcome of intracerebral haemorrhage growth (defined as 
>6 mL increase in intracerebral haemorrhage volume on repeat imaging) using multivariable logistic regression models 
in development and validation cohorts in four subgroups of patients, using a hierarchical approach: patients not taking 
anticoagulant therapy at intracerebral haemorrhage onset (who constituted the largest subgroup), patients taking 
anticoagulant therapy at intracerebral haemorrhage onset, patients from cohorts that included at least some patients 
taking anticoagulant therapy at intracerebral haemorrhage onset, and patients for whom both information about 
anticoagulant therapy at intracerebral haemorrhage onset and spot sign on acute CT angiography were known.

Findings Of 4191 studies identified, 77 were eligible for inclusion. Overall, 36 (47%) cohorts provided data on 
5435 eligible patients. 5076 of these patients were not taking anticoagulant therapy at symptom onset (median age 
67 years, IQR 56–76), of whom 1009 (20%) had intracerebral haemorrhage growth. Multivariable models of patients 
with data on antiplatelet therapy use, data on anticoagulant therapy use, and assessment of CT angiography spot sign 
at symptom onset showed that time from symptom onset to baseline imaging (odds ratio 0·50, 95% CI 0·36–0·70; 
p<0∙0001), intracerebral haemorrhage volume on baseline imaging (7·18, 4·46–11·60; p<0∙0001), antiplatelet use 
(1·68, 1·06–2·66; p=0∙026), and anticoagulant use (3·48, 1·96–6·16; p<0∙0001) were independent predictors of 
intracerebral haemorrhage growth (C-index 0·78, 95% CI 0·75–0·82). Addition of CT angiography spot sign (odds 
ratio 4·46, 95% CI 2·95–6·75; p<0·0001) to the model increased the C-index by 0·05 (95% CI 0·03–0·07).

Interpretation In this large patient-level meta-analysis, models using four or five predictors had acceptable to good 
discrimination. These models could inform the location and frequency of observations on patients in clinical practice, 
explain treatment effects in prior randomised trials, and guide the design of future trials.
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Introduction
Haemorrhagic stroke is responsible for around 11% of 
strokes in high-income countries but 22% of strokes in 
low-income and middle-income countries,1 where 75% of 

deaths due to haemorrhagic stroke occur.2 Spontaneous 
(non-traumatic) intracerebral haemorrhage is the most 
frequent type of haemorrhagic stroke and has the worst 
outcome: almost half of patients die within the first 
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month and 80% of survivors are dependent on a 
caregiver.3

Intracerebral haemorrhage volume increases after 
vessel rupture and growth can continue after intra-
cerebral haemorrhage is first diagnosed on brain 
imaging. Intracerebral haemorrhage growth is asso ciated 
with poor clinical outcome.4 Therefore, immediately after 
confirmation of intracerebral haemorrhage diagnosis on 
brain imaging, accurate prediction of the risk of later 
intracerebral haemorrhage growth could help to target 
patients’ monitoring, treatment and transfer to specialist 
care, and the design and interpretation of randomised 
trials of treatments to limit intracerebral haemorrhage 
growth.5

The timing of the first brain imaging done after 
intracerebral haemorrhage onset and the intracerebral 
haemorrhage volume found on imaging are two 
consistently identified risk factors for intracerebral 
haemorrhage growth, although the association of other 
potential risk factors has been inconsistent in many small 
observational studies. Interest has grown in whether a 
so-called spot sign due to contrast extravasation on 
additional angiography at the time of diagnostic imaging 
is a predictor of intracerebral haemorrhage growth.6 There 
are several multivariable prediction models for intra-
cerebral haemorrhage growth,7–11 but the identified 
predictors have varied across models, and several have 

relied on CT angiography,12 which is not readily available 
in low-income and middle-income countries. Identifying 
more accurate predictors of intracerebral haemorrhage 
growth is recognised to be a research priority.13

Therefore, we aimed to identify the risk and predictors 
of acute intracerebral haemorrhage growth, develop and 
validate prediction models that could be used worldwide, 
and evaluate the added value of CT angiography.

Methods
Search strategy and selection criteria
We conducted a systematic review to identify studies of 
intracerebral haemorrhage growth that would share 
individual patient data for a patient-level meta-analysis of 
the absolute risks and predictors of intracerebral 
haemorrhage growth.14 A prespecified protocol (finalised 
on June 20, 2013, and not registered; appendix) guided 
our data collection and analyses.

One author (JF) identified potentially eligible cohorts 
by searching OVID MEDLINE from Jan 1, 1970, to 
Dec 31, 2015, using a comprehensive search strategy 
(appendix); hand-searching relevant studies’ biblio-
graphies; contacting authors of collaborating studies; 
and accessing patient-level data from eligible cohorts in 
the Virtual International Stroke Trials Archive. We 
included the largest single report of any observational or 
randomised cohort—regardless of language of 

Research in context

Evidence before this study
We did a systematic review of studies of the risk of intracerebral 
haemorrhage growth, and associations with it, published in 
OVID MEDLINE (from Jan 1, 1970, to Dec 31, 2015) using a 
comprehensive search strategy, limited to humans, combining 
terms for intracerebral haemorrhage (“exp basal ganglia 
hemorrhage/”, “intracranial hemorrhages/”, “cerebral 
hemorrhage/”, “intracranial hemorrhage, hypertensive/”, and 
other text words) with text words suggesting growth 
(“expansion”, “growth”, or “enlargement”), with no language 
restrictions. When we updated the search to March 1, 2018, we 
identified reports of five new cohorts, representing a maximum 
of a 10% increase in the number of eligible patients compared 
with those from the 36 cohorts that provided individual patient 
data in this meta-analysis. We did not include these five new 
cohorts in our analyses. Intracerebral haemorrhage growth risk 
is known to be highest soon after intracerebral haemorrhage 
symptom onset, but its absolute risks over time and by baseline 
volume are unclear. Studies have identified several risk factors 
associated with intracerebral haemorrhage growth, but many 
associations are not consistent across studies, and the 
predictive values of these risk factors remain to be determined.

Added value of this study
Our systematic review led to the pooling of 5435 eligible 
patients from 36 cohorts, which is, to the best of our 

knowledge, the largest patient-level meta-analysis to explore 
the absolute risk and predictors of intracerebral haemorrhage 
growth. We found that the risks of growth over time and by 
baseline intra cerebral haemorrhage volume were not linear. The 
sample size enabled us to model these associations with good 
precision and construct and validate multivariable models 
adjusted for 13 categorical or continuous covariates. Four 
predictors (time from symptom onset to baseline imaging, 
intracerebral haemorrhage volume on baseline imaging, 
antiplatelet use, and anticoagulant use) were independent 
predictors of intracerebral haemorrhage growth (C-index 0·78, 
95% CI 0·75–0·82). Addition of information about the presence 
of spot sign on CT angiography to the model increased the 
C-index by just 0·05 (95% CI 0·03–0·07).

Implications of all the available evidence
Models using four or five predictors that are simple to collect 
had acceptable to good discrimination for predicting 
intracerebral haemorrhage growth, which was slightly 
improved by the addition of information on spot sign from CT 
angiography. These models could guide the monitoring of 
patients at risk of clinical deterioration as well as the 
interpretation and investigation of treatment effects in 
randomised trials.

http://www.vistacollaboration.org
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publication—if it included at least ten eligible patients 
with acute intracerebral haemorrhage who had brain 
imaging (by CT with or without angiography or by MRI) 
to diagnose intracerebral haemorrhage and used a 
predefined protocol for repeat imaging (done regardless 
of clinical need), which would minimise the risks of 
selection and information biases about intracerebral 
haemorrhage growth.

We included patients from these cohorts if they were 
aged 18 years or older; had non-traumatic intracerebral 
haemorrhage that was probably due to cerebral small 
vessel disease and not secondary to an underlying 
structural cause identified by brain imaging; had data 
available from brain imaging initially done 0·5–24 h and 
repeated fewer than 6 days after symptom onset; had 
baseline intracerebral haemorrhage volume of less than 
150 mL; and did not undergo acute treatment that might 
reduce intracerebral haemorrhage volume (ie, surgical 
evacuation,15 haemostatic therapy,5 or blood pressure 
lowering16). We excluded patients if the time from 
symptom onset to baseline imaging was not known in 
hours or if they had not been included in the published 
report of their cohort.

We emailed our protocol and an invitation to collaborate 
to the corresponding authors of cohorts that were eligible 
for inclusion, followed by one reminder. We included 
cohorts if corresponding authors of studies reporting 
them confirmed their eligibility and provided patient-level 
data on eligibility criteria and other variables at baseline, 
information on type and timing of baseline and repeat 
brain imaging, intracerebral haemorrhage characteristics 
(location, volume on baseline and repeat imaging, 
presence of intraventricular haemorrhage), and the 
presence of the spot sign on CT angiography if done 
(appendix).

Research ethics committees or other entities overseeing 
the use of patients’ data had approved the collaborating 
cohorts. Cohorts shared only anonymised data, so neither 
individual consent nor specific approval for this 
individual patient data meta-analysis were required.

Data analysis
We used reports of the included cohorts to categorise 
their method of intracerebral haemorrhage volume 
measurement as a cohort-level characteristic into either 
the manual ABC/2 method17 or an automated or semi-
automated planimetric method.18 We assessed risk of 
bias across cohorts by identifying the studies that did not 
meet our eligibility criteria, did not share data, or did not 
provide data on a sufficient number of the variables of 
interest (appendix). We checked data completeness and 
consistency within each cohort and resolved any queries 
directly with the relevant collaborators. We standardised 
the format, coding, and units of measurement of 
variables to maximise the number available for analysis 
in all cohorts. We did not use or request aggregate data 
from cohorts that did not share patient-level data.

We prespecified that the primary outcome measure of 
intracerebral haemorrhage growth would be an increase in 
intracerebral haemorrhage volume between baseline and 
repeat imaging of more than 6 mL; we chose an absolute 
measure of intracerebral haemorrhage growth in volume 
because such measures seem to have higher positive 
predictive values for more severe clinical outcomes than 
does the combination of absolute or relative increases in 
intracerebral haemorrhage volume (eg, >33%).19

We prespecified the variables that might be predictors 
of intracerebral haemorrhage growth in our protocol 
(appendix) on the basis of their clinical relevance, 
likelihood of being associated with outcome, and 
reliability and accuracy of measurement (appendix). To 
these variables, we added history of liver disease and 
history of stroke; we also added CT angiography spot 
sign in view of the increasing interest in its role as a 
predictor since the protocol had originally been written 
(appendix).6 Of these prespecified variables, we selected 
potential predictors on the basis of their completeness 
and availability at the time of diagnosis in the available 
cohorts and the extent to which their selection maximised 
the total sample size available for multivariable analyses. 
Many cohorts excluded patients taking anticoagulant 
therapy at onset and only a few cohorts conducted CT 
angiography, so we took a hierarchical approach to 
investigating univariable and multivariable associations 
and predictors of intracerebral haemorrhage growth.

First, we analysed patients not taking anticoagulant 
therapy at intracerebral haemorrhage symptom onset 
because they constituted the vast majority of the included 
cohorts. In this dataset, we examined the associations 
between intracerebral haemorrhage growth and a subset 
of the variables, which were chosen on the basis of their 
completeness and availability at the time of intracerebral 
haemorrhage diagnosis in the participating cohorts. We 
visually inspected plots of cohort-specific estimates of 
association for each variable to exclude major 
heterogeneity. We then used a one-stage approach to 
meta-analysis to obtain unadjusted and adjusted 
estimates pooled across the cohorts using logistic 
regression models with random intercepts and random 
coefficients. For all continuous predictors, we used 
either a linear term or, where there was strong evidence 
(p<0·01) of non-linearity on the log-odds scale, a 
fractional polynomial. We described the univariable 
associations between intracerebral haemorrhage growth 
and two of the continuous variables (time to baseline 
imaging and intracerebral haemorrhage volume at 
baseline) by plotting the predicted probability of 
intracerebral haemorrhage growth derived from the 
model against the predictor. For the remaining 
continuous variables, we quantified the unadjusted and 
adjusted associations using the odds ratio for the upper 
quartile compared with the lower quartile based on the 
fitted linear or fractional polynomial terms in the logistic 
regression model. We had a sufficient sample size to 
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split those patients who were not taking anticoagulant 
therapy by contributing cohort into two datasets: one to 
develop a prediction model and another to validate its 
performance. We did this temporal validation with 
patients from earlier cohorts (1994–2007) allocated to the 

development dataset and patients from more recent 
cohorts (2008–15) allocated to the validation dataset. We 
chose a subset of potential predictors for entry into a 
multivariable model on the basis of their combined 
availability in the development dataset and the number 
of patients with intracerebral haemorrhage growth (to 
avoid overfitting), without considering the results of the 
unadjusted and adjusted associations between each 
predictor and intracerebral haemorrhage growth. We did 
not examine interactions between other covariates and 
these associations. We derived a prediction index for 
intracerebral haemorrhage growth with the predictors 
that remained in a multivariable logistic regression 
model after backwards elimination. We assessed the 
performance of the prediction model using calibration 
plots of predicted versus observed probabilities, receiver 
operating characteristic curves, and the C-index to assess 
discrimination in both the development and validation 
datasets and in patients from cohorts that included 
patients taking anticoagulant therapy at intracerebral 
haemorrhage onset. 

Second, we assessed the performance of the prediction 
model in patients taking anticoagulant therapy at 
intracerebral haemorrhage onset. 

Third, we split by contributing cohort those patients 
from cohorts that included at least some patients taking 
anticoagulant therapy at intracerebral haemorrhage 
onset  into one dataset to develop a prediction model and 
another to validate its performance (using temporal 
validation, as described above). We considered the same 
subset of potential predictors as for the first prediction 
model, with the addition of anticoagulant therapy use 
at intracerebral haemorrhage onset. We derived a 
prediction index for intracerebral haemorrhage growth 
and assessed its performance using the same approaches 
as for the first prediction model. 

Fourth, in cohorts that included at least some patients 
with data available on the spot sign identified by CT 
angiography and that also included and distinguished 
patients taking anticoagulant therapy at onset, we 
assessed whether spot sign presence was independently 
associated with intracerebral haemorrhage growth and 
the predictive performance when it was added to the 
predictors in the second prediction model.

We did a prespecified sensitivity analysis to compare 
our findings using a definition of intracerebral 
haemorrhage growth as an absolute increase of more 
than 6 mL versus an absolute increase of more than 6 mL 
or a relative increase of more than 33% in intracerebral 
haemorrhage volume. We did post-hoc sensitivity 
analyses to compare associations between time from 
intracerebral haemorrhage symptom onset to baseline 
brain imaging and intracerebral haemorrhage volume on 
baseline imaging with intracerebral haemorrhage growth 
in cohorts using ABC/2 versus planimetric methods of 
measuring intracerebral haemorrhage volume and in 
cohorts from earlier versus later time periods.

Figure 1: Study selection
*Excluded studies and cohorts are listed in the appendix. 

167 assessed for eligibility criteria

77 cohorts eligible for inclusion and
invited to share patient-level data

36 cohorts providing patient-level data
on 6428 patients

36 cohorts providing patient-level data 
      on 5435 patients included in

meta-analysis

4191 articles identified from electronic
database searches and screened after
removal of duplicates

90 excluded after full-text screening*
18 no study protocol for repeat imaging

7 cohorts of ten patients or fewer
4 all patients had secondary intracerebral
    haemorrhage

12 all patients received an intervention that
might restrict intracerebral haemorrhage
growth

49 overlap with another report

41 cohorts did not provide patient-level data*
31 agreed initially but no response

7 investigators declined to participate
3 data sent incomplete

4024 excluded
1818 after title screening
2206 after abstract screening

993 patients did not meet eligibility criteria
 159 not included in published report of study
 75 also included in another participating 
  study
 58 did not have spontaneous intracerebral 
  haemorrhage
 12 received treatment affecting 
  intracerebral haemorrhage volume
 9 follow-up scans done after surgery
 331 time from onset to baseline scan 
  unknown
 131 time from onset to baseline scan <0·5 h
 83 time from onset to baseline scan >24 h
 63 time from onset to follow-up scan 
  unknown
 55 time from onset to follow-up scan 
  >6 days
 17 intracerebral haemorrhage volume on 
  baseline scan ≥150 mL



Articles

www.thelancet.com/neurology   Vol 17   October 2018 889

Analyses were done using SAS software version 9.4 
(SAS Institute) and Stata version 12.1 (StataCorp).

Role of the funding source
The study sponsors had no role in study design; in 
the collection, analysis, and interpretation of data; in the 
writing of the report; and in the decision to submit the 
paper for publication. The data were available to all 
authors on request. The corresponding author had final 
responsibility for the decision to submit for publication.

Results
We screened 4191 studies identified by our searches, 
assessed 167 for eligibility, invited 77 eligible cohorts to 
share data, and obtained patient-level data from 36 (47%) 
cohorts18–51 involving 6428 patients with repeat brain 

imaging after intracerebral haemorrhage between 1985 
and 2015 (no data up to 1984 were obtained; figure 1; 
appendix).20–55 Countries classified as high income by the 
World Bank contributed to 26 (72%) of 36 collaborating 
cohorts versus 30 (73%) of 41 eligible cohorts that did 
not collaborate. Planimetric methods of measuring 
intracerebral haemorrhage volume were used by 19 (53%) 
of 36 collaborating cohorts versus six (15%) of 41 eligible 
cohorts that did not collaborate.

After confirming the integrity of the data from eligible 
cohorts and excluding patients who were ineligible, we 
created a dataset of 5435 patients (appendix), from which 
we identified four groups of patients for further analysis: 
5076 patients not taking anticoagulant therapy at 
intracerebral haemorrhage onset, 351 patients taking 
anticoagulant therapy at intracerebral haemorrhage 

Not taking 
anticoagulant therapy 
(n=5076)

Taking anticoagulant 
therapy (n=351)

From cohorts with some 
patients taking 
anticoagulant therapy 
(n=3550)

CT angiography 
(n=868)

Sex

Female 1971/4884 (40%) 135 (38%) 1449 (41%) 379 (44%)

Male 2913/4884 (60%) 216 (62%) 2101 (59%) 489 (56%)

Age, years 67 (56–76) 76 (69–82) 69 (58–78) 70 (57–79)

Previous stroke 607/4560 (13%) 77/317 (24%) 481/3308 (15%) 97/829 (12%)

Previous intracerebral haemorrhage* 179/2753 (7%) 9/246 (4%) 113/2051 (6%) 29/805 (4%)

Previous ischaemic stroke* 246/2755 (9%) 53/246 (22%) 213/2051 (10%) 70/805 (9%)

History of hypertension 3787/5050 (75%) 291 (83%) 2739/3547 (77%) 616/866 (71%)

History of diabetes mellitus 727/4197 (17%) 82/343 (24%) 626/3475 (18%) 137/807 (17%)

History of liver disease 256/3360 (8%) 14/220 (6%) 96/1946 (5%) 15/360 (4%)

History of excessive alcohol consumption† 568/3091 (18%) 20/177 (11%) 221/1455 (15%) 73/554 (13%)

Antiplatelet therapy at symptom onset 913/5030 (18%) 102 (29%) 855/3543 (24%) 225/837 (27%)

Anticoagulant therapy at symptom onset 0 351 (100%) 349/3547 (10%) 87/841 (10%)

Systolic blood pressure at presentation, mm Hg 177 (158–198); n=4882 170 (147–190); n=320 177 (157–197); n=3333 175 (150–200); n=860

Blood glucose at presentation, mmol/L 7·0 (5·9–8·7); n=4265 7·4 (6·0–9·3); n=340 7·0 (5·9–8·7); n=3417 7·3 (6·1–8·9); n=864

Platelet count (×10⁹/L) at presentation 221 (181–266); n=3857 209 (174–260); n=289 222 (185–267); n=2284 227 (181–273); n=862

Glasgow Coma Scale score at presentation

3–6 285/4564 (6%) 42/342 (12%) 248/3502 (7%) 73/831 (9%)

7–12 1033/4564 (23%) 81/342 (24%) 824/3502 (24%) 193/831 (23%)

13–14 1157/4564 (25%) 70/342 (20%) 830/3502 (24%) 151/831 (18%)

15 2089/4564 (46%) 149/342 (44%) 1600/3502 (46%) 414/831 (50%)

NIHSS score at presentation 12 (7–18); n=2661 13 (7–17); n=126 12 (7–17); n=2014 14 (6–18); n=325

Time from symptom onset to baseline imaging, h 2·4 (1·3–4·7) 3·3 (1·7–6·4) 2·2 (1·3–4·2) 2·9 (1·5–5·1)

Intracerebral haemorrhage volume on baseline 
imaging, mL

13·2 (6·3–30·0) 16·0 (6·4–39·0) 13·4 (6·6–30·3) 15·0 (6·6–34·1)

Lobar location of intracerebral haemorrhage on 
baseline imaging

1080/4920 (22%) 129/344 (38%) 907/3439 (26%) 267/866 (31%)

Intraventricular haemorrhage present on baseline 
imaging

1834/4980 (37%) 157/348 (45%) 1265/3452 (37%) 344 (40%)

CT angiogram spot sign present ·· ·· ·· 204 (24%)

>6 mL intracerebral haemorrhage growth 1009 (20%) 110 (31%) 771 (22%) 177 (20%)

>6 mL or >33% intracerebral haemorrhage growth 1301 (26%) 139 (40%) 986 (28%) 219 (25%)

Data are n (%), n/N (%), or median (IQR). NIHSS=National Institutes of Health Stroke Scale. *Available in a subgroup of cohorts that quantified the subtype of previous stroke. 
Not all cohorts that quantified the subtype included both intracerebral haemorrhage and ischaemic stroke. †Definition of excessive consumption varied across cohorts. 

Table 1: Characteristics of patients included in the four datasets for meta-analysis
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onset, 3550 patients from cohorts that included at least 
some patients taking anticoagulant therapy at intra-
cerebral haemorrhage onset, and 868 patients for whom 
both information about anticoagulant therapy at 
intracerebral haemorrhage onset and spot sign on acute 
CT angiography were known (table 1; appendix). The 
availability of potential predictors varied between the 
collaborating cohorts such that their overall completeness 
was 86% in the patients not taking anticoagulant therapy 
at intracerebral haemorrhage onset, 88% in the patients 
taking anticoagulant therapy at intracerebral haemor-
rhage onset, 89% in patients from cohorts that included 
at least some patients taking anticoagulant therapy at 
intracerebral haemorrhage onset, and 91% in the 
patients with information about anticoagulant therapy at 
intracerebral haemorrhage onset and spot sign on acute 
CT angiography. More than 80% of patients in all groups 
had repeat imaging done within 48 h of intracerebral 
haemorrhage onset and less than 2% of patients had 
repeat imaging done more than 4 days after intracerebral 
haemorrhage onset (appendix).

When assessing the two variables with non-linear 
associations, we found that in patients not taking 
anticoagulant therapy at intracerebral haemorrhage 
onset, the predicted probability of intracerebral 
haemorrhage growth declined with increasing time from 
intracerebral haemorrhage symptom onset to baseline 
imaging: the rate of decline was steepest 0∙5–3 h after 
intracerebral haemorrhage symptom onset (figure 2A). 
The predicted probability of intracerebral haemorrhage 
growth increased with increasing intracerebral 
haemorrhage volume on baseline brain imaging and 
peaked at about 75 mL, above which it declined (figure 2B). 
We aimed to quantify the associations between 
17 additional variables and the occurrence of intracerebral 
haemorrhage growth (appendix). There were too few 
patients with data for six variables (previous intracerebral 
haemorrhage, previous ischaemic stroke, history of liver 
disease, history of excessive alcohol consumption, platelet 
count at presentation, and National Institutes of Health 
Stroke Scale [NIHSS] score at presentation). Therefore, 
we selected 13 of the 19 variables as potential predictors 
for a multivariable model in patients not taking 
anticoagulant therapy, on the basis of maximising the 
number of predictors being considered while also 
maximising the number of patients with complete data 
for all the predictors chosen for the subset: time from 
symptom onset to baseline imaging, intracerebral 
haemorrhage volume on baseline imaging, sex, age, 
previous stroke, history of hypertension, history of 
diabetes, antiplatelet therapy at symptom onset, systolic 
blood pressure at presentation, blood glucose at 
presentation, Glasgow Coma Scale score at presentation, 
intracerebral haemorrhage location on baseline scan, and 
intraventricular haemorrhage on baseline scan. We 
restricted all further analyses to datasets of patients with 
complete data on these 13 potential predictors.

3479 patients who were not taking anticoagulant therapy 
at intracerebral haemorrhage onset had data available for 
the 13 predictors. We developed a prediction model for 
intracerebral haemorrhage growth using a dataset 
of 2534 (73%) of these patients from 18 earlier cohorts (ie, 
1994–2007; appendix). From the 13 potential predictors 
considered, three significant predictors constituted the 
final model (table 2):
where the predictive index (PI) is given by

with time measured in hours, volume measured in mL, 
and antiplatelet an indicator variable for antiplatelet 
therapy at intracerebral haemorrhage onset taking 
values 1 for yes and 0 for no.

This first prediction model had good calibration 
(appendix) and its discrimination was good in both the 
development dataset (C-index 0∙75, 95% CI 0∙72–0∙77) 
and the temporal validation dataset of 945 (27%) patients 

Figure 2: Predicted probability of intracerebral haemorrhage growth >6 mL 
Data calculated on 5076 patients who were not taking anticoagulant therapy at 
symptom onset. (A) Predicted probability by time from intracerebral 
haemorrhage symptom onset to baseline imaging, and (B) according to 
intracerebral haemorrhage volume on baseline imaging. The solid line indicates 
predicted probability and the shaded region indicates the 95% CIs.
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from six later cohorts (0∙76, 0∙73–0∙79). This prediction 

model, derived in patients who were not taking 
anticoagulant therapy at symptom onset, underestimated 
the probability of intracerebral haemorrhage growth in 
the 351 patients in 21 cohorts who were taking 
anticoagulant therapy at symptom onset (appendix), but 
its discrimination remained good (0∙73, 0∙68–0∙79).

We also developed a prediction model for intracerebral 
haemorrhage growth using a dataset of 2381 patients 
from ten cohorts that included at least some patients 
taking anticoagulant therapy at intracerebral haemorrhage 
onset (appendix). From the 13 potential predictors plus 
anticoagulant therapy at intracerebral haemorrhage 
symptom onset, four predictors constituted the final 
model (table 2), where PI is given by

where anticoagulant is an indicator variable for 
anticoagulant therapy at intracerebral haemorrhage 
onset taking values 1 for yes and 0 for no.

This second prediction model was well calibrated 
(appendix) and its discrimination was good in both the 
development dataset (C-index 0∙75, 95% CI 0∙73–0∙78) 
and the validation dataset of 895 patients from five cohorts 
(0∙74, 0∙71–0∙78).

Finally, to assess the additional predictive value of spot 
sign on CT angiography, we assessed the performance of 
a third prediction model in the 837 patients from 
six cohorts with available data on all covariates (appendix), 
where PI is given by

where spot is an indicator variable for presence of CT 
angiography spot sign taking values 1 for present and 0 
for absent.

The presence of the spot sign was strongly and 
independently associated with the occurrence of 
intracerebral haemorrhage growth (table 3) and improved 
the C-index of the prediction model by 0∙05 (95% CI 
0∙03–0∙07) from 0∙78 (0∙75–0∙82) to 0∙83 (0∙80–0∙86; 
figure 3).

We assessed the performance of the second and third 
prediction models at different thresholds of predicted 
probability of intracerebral haemorrhage growth and 
found very few significant differences in sensitivity, 
specificity, positive predictive value, and negative 
predictive value (appendix).

In a prespecified sensitivity analysis, when we defined 
intracerebral haemorrhage growth as an absolute increase 

of more than 6 mL or a relative increase of more than 33% 
in intracerebral haemorrhage volume between baseline 
and follow-up imaging, the direction, strength, and 
significance of the adjusted associations between almost all 
predictors and intracerebral haemorrhage growth remained 
the same (appendix), and the C-index of our second 
prediction model improved from 0∙71 (95% CI 0∙67–0∙75) 
to 0∙76 (0∙72–0∙80) with the addition of information from 
CT angiography (appendix). In a post-hoc sensitivity 
analysis, we found no evidence that the risk of intracerebral 
haemorrhage growth according to time from symptom 
onset to baseline imaging or according to intracerebral 
haemorrhage volume on baseline imaging differed by 
cohort epoch or volumetric method used (appendix).

Discussion
This collaborative meta-analysis evaluated 19 covariates in 
one or more analyses of predictors of intracerebral 
haemorrhage growth from 5435 eligible patients in 
36 cohorts. We identified novel non-linear associations 
between the probability of intracerebral haemorrhage 
growth and both the time from symptom onset to baseline 
imaging and baseline intracerebral haemorrhage volume. 
We showed that only four predictors that are simple to 
collect (time from symptom onset to baseline imaging, 
intracerebral haemorrhage volume on baseline imaging, 
antiplatelet use, and anticoagulant use) were inde-
pendently associated with intracerebral haemorrhage 
growth in multivariable models, and a prediction model 
that we developed using these predictors not only had 
good calibration and discrimination but also done well in 
an external validation dataset. The addition of information 
about the presence of spot sign on CT angiography to this 
prediction model gave a small increase in discrimination.

Although many studies have investigated unadjusted 
and adjusted associations between a wide variety of clinical, 
blood, genetic, imaging, and pharmacological factors and 
the occurrence of intracerebral haemorrhage growth, only 

Comparison Odds ratio (95% CI) p value

Patients not taking anticoagulant therapy at symptom onset*

Time from symptom onset to baseline imaging, h† 3·4 vs 1·2 0·65 (0·51–0·82) 0·0003

Intracerebral haemorrhage volume on baseline 
imaging, mL†

28 vs 7 4·73 (3·81–5·87) <0·0001

Antiplatelet therapy at symptom onset Yes vs no 1·38 (1·06–1·79) 0·016

Patients from cohorts including at least some patients taking anticoagulant therapy at symptom 
onset‡

Time from symptom onset to baseline imaging, h† 3·5 vs 1·2 0·59 (0·42–0·82) 0·0021

Intracerebral haemorrhage volume on baseline 
imaging, mL†

29 vs 7 4·81 (3·82–6·05) <0·0001

Antiplatelet therapy at symptom onset Yes vs no 1·36 (1·04–1·78) 0·023

Anticoagulant therapy at symptom onset Yes vs no 2·91 (1·97–4·26) <0·0001

 *Data were calculated on 2534 patients from 18 cohorts (appendix). †The odds ratios for time from symptom onset to 
baseline imaging and intracerebral haemorrhage volume on baseline imaging are for upper quartile compared with lower 
quartile. ‡Data were calculated on 2381 patients from ten cohorts (appendix).

Table 2: Multivariable models of predictors of intracerebral haemorrhage growth >6 mL

–4·254 – 0·196time – 0·0754volume
+ 1·186√volume + 0·320antiplatelet

–4·954 – 0·138time – 0·0769volume
+ 1·139√volume + 0·370antiplatelet
+ 1·028anticoagulant + 1·496spot

–4·426 – 0·230time 
– 0·0776volume + 1·196√volume
+ 0·310antiplatelet + 1·065anticoagulant
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a few prediction models have been developed and the 
predictors used have varied considerably.7–11,51 Since 2011, 
there has been growing interest in use of the spot sign on 
CT angiography for predicting intracerebral haemorrhage 
growth,10,30 but the clinical utility of the small increase in 
discrimination that resource-intensive advanced vascular 
imaging adds to simple clinical and imaging predictors 
that are available worldwide is unclear.

The strengths of this study include its large sample size 
and availability of many predictors from geographically 
diverse cohorts to develop and externally validate 
prediction models involving simple predictors that could 
be used in any health-care setting, as well as the added 

value of CT angiography in high-income countries. We 
minimised the risk of selection and information biases by 
restricting eligibility to cohorts that had defined when they 
would repeat brain imaging soon after intracerebral 
haemorrhage onset in all survivors and not according to 
clinical need alone.

Although our study was large, only half of the 
investigators of the available cohorts shared patient-level 
data. Most cohorts were assembled in high-income 
countries. A shortage of data on the following variables 
precluded their inclusion in our prediction models: 
previous intracerebral haemorrhage, previous ischaemic 
stroke, history of liver disease, history of excessive alcohol 
consumption, platelet count at presentation, and NIHSS 
score at presentation. Since the end of the literature search 
that defined inclusion in our analyses, our update of the 
search to March 1, 2018, identified reports of five new 
cohorts involving 669 patients, representing a maximum 
of a 10% increase over the 6428 patients from 36 cohorts 
that provided individual patient data. Nonetheless, the 
sample size we achieved allowed us to develop and validate 
prediction models using a large number of widely available 
predictors, without omitting any predictors that had been 
identified by previous prediction models. Included cohorts 
with data collected in the 1990s might not have used 
multiple-row detector array technology and digitisation, 
which might have affected their accuracy of intracerebral 
haemorrhage volume measurement, although there was 
no evidence that our findings differed by cohort epoch in 
sensitivity analyses. 19 (53%) of 36 cohorts used planimetric 
methods to estimate intracerebral haemorrhage volume 
but 17 (47%) of 36 cohorts used the ABC/2 method (which 
can marginally overestimate intracerebral haemorrhage 
volume18), although we found no evidence that our findings 
differed by volumetric method in sensitivity analyses. 
Since these cohorts were studied, a variety of new imaging 
signs (eg, density, irregularity, fluid level, hypodensity, 
island, satellite, swirl,56 blend,37 and black hole57) have been 
described, but we were unable to evaluate them because 
they were not collected by the collaborating cohorts and we 
could not re-evaluate patients’ imaging. However, our 

Comparison Four predictors Four predictors with the addition of 
CT angiography spot sign

Odds ratio (95% CI) p value Odds ratio (95% CI) p value

Time from symptom onset to baseline 
imaging, h*

5·1 vs 1·5 0·50 (0·36–0·70) <0·0001 0·61 (0·44–0·84) 0·0030

Intracranial haemorrhage volume on 
baseline imaging, mL*

33 vs 6 7·18 (4·46–11·56) <0·0001 5·35 (3·25–8·81) <0·0001

Antiplatelet therapy at symptom onset Yes vs no 1·68 (1·06–2·66) 0·026 1·45 (0·89–2·35) 0·13

Anticoagulant therapy at symptom onset Yes vs no 3·48 (1·96–6·16) <0·0001 2·80 (1·53–5·10) 0·0008

CT angiography spot sign Present vs absent ·· ·· 4·46 (2·95–6·75) <0·0001

Data were calculated on 837 patients from six cohorts (appendix). *Odds ratios for time from symptom onset to baseline imaging and intracranial haemorrhage volume on 
baseline imaging are for upper quartile vs lower quartile.

Table 3: Multivariable models of predictors of intracerebral haemorrhage growth >6 mL in patients with assessment of CT angiography spot sign, data 
on antiplatelet therapy, and data on anticoagulant therapy use at symptom onset

Figure 3: Receiver operating characteristic curves for the predicted 
probability of intracerebral haemorrhage growth >6 mL
Data calculated on 837 patients with assessment of CT angiography spot sign, 
data on antiplatelet therapy, and data on anticoagulant therapy use at symptom 
onset. Receiver operating characteristic curves used four predictors (time from 
symptom onset to baseline imaging [h], intracerebral haemorrhage volume on 
baseline imaging [mL], antiplatelet therapy at symptom onset, and 
anticoagulant therapy at symptom onset) and four predictors plus CT 
angiography spot sign. 
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simple prediction models provide the basis upon which 
the added value of these new signs can be assessed, as we 
have done for the CT angiography spot sign.

We found that the rate of decline in the probability of 
intracerebral haemorrhage growth was steepest during 
the 0∙5–3 h after intracerebral haemorrhage symptom 
onset and that the predicted probability of intracerebral 
haemorrhage growth peaked at an intracerebral 
haemorrhage volume of about 75 mL. These findings 
could in part explain the neutral results of recent 
randomised trials of acute interventions designed to limit 
intracerebral haemorrhage growth, which enrolled many 
patients towards or beyond the time of greatest risk of 
intracerebral haemorrhage growth and most patients had 
small intracerebral haemorrhages at low probability of 
growth. For example, the average time to randomisation 
after intracerebral haemorrhage symptom onset and 
average intracerebral haemorrhage volume were 3∙7 h 
and 13 mL in TICH2,58 3∙7 h and 11 mL in INTERACT2,22 
3·1 h and 10 mL in ATACH2,59 and 2∙7 h and 22–24 mL in 
FAST.40 In particular, our findings about the association 
between time after intracerebral haemorrhage symptom 
onset and the probability of intracerebral haemorrhage 
growth emphasise the importance of extremely rapid 
assessment, investigation, and randomisation in future 
trials of therapies to improve outcome by limiting 
intracerebral haemorrhage growth.

The prediction models that we have developed could 
be useful in clinical practice for predicting the 
risk of intracerebral haemorrhage growth, which is 
recommended in the emergency assessment of acute 
intracerebral haemorrhage. The clinically useful threshold 
for the predicted probability of intracerebral haemorrhage 
growth will vary according to its desired accuracy 
(appendix), the clinical setting, and future therapeutic 
advances, such that our models might help in determining 
patients’ place of care and frequency of observation.60
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